REFERENCES: Soil anisotropy theory

[1] A. Gasparre, M. Coop. Techniques for performing small-strain probes in the triaxial apparatus. Géotechnique 56 (7) 491-495, 2006

[2] S. Nishimura. Assessment of anisotropic elastic parameters of saturated clay measured in triaxial apparatus:Appraisal of techniques and derivation procedures, Soils and Foundations, 54,364-376, 2014a

[3] R.O.Davis, A.P.S Selvadurai, A.P.S. Elasticity and Geomechanics, Cambridge University Press, 216 pages, 1996

[4] F.Tatsuoka, S. Shibuya. Deformation characteristics of soil and rocks from field and laboratory tests. Proc. 9th Asian Regional Conf. Soil Mechanics and Foundation Engineering 101-170, 1991

[5] R.J. Jardine. Some observations on the kinematic nature of soil stiffness. Soils and Foundations 32 (2) 111-124, 1992.

[6] A. Puzrin, A. Constitutive Modelling in Geomechanics: Introduction. Springer Printed, 320 pages, 2012

[7] M. Oda. Initial fabrics and their relations to the mechanical properties of granular materials. Soils and Foundations 12 (1) 17-36, 1972.

[8] J. Graham, G.T. Houlsby. Anisotropic elasticity of a natural clay. Géotechnique 33 (2) 165-180, 1983.

[9] A.W.Bishop, D.W. Hight. The value of Poisson’s ratio in saturated soils and rocks stressed under undrained conditions. Géotechnique 27 (3) 369–384, 1977.

[10] Z.X.Yang, X.S.Li, J. Yang. Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58 (4) 237-248, 2008

[11] C.R.I. Clayton. Stiffness at small strain: research and practice. Géotechnique 61 (1) 5-37, 2011

[12] R. Bellotti, M. Jamiolkowski, D.C.F. Lo Presti, D.A. O’Neill. Anisotropy of small strain stiffness in Ticino sand. Géotechnique 46 (1) 115-131, 1996.

[13] R. Kuwano, T.M. Connolly, R.J. Jardine. Anisotropic stiffness measurements in a stress-path triaxial cell. Geotechnical Testing Journal 23 (2) 141-157, 2000.

[14] R. Kuwano, R. J. Jardine. On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52 (10) 727-749, 2002.

[15] N. Hongnam, J. Koseki, J. Quasi-elastic deformation properties of Toyoura Sand in cyclic triaxial and torsional loadings. Soils and Foundations 45 (5) 19-38, 2005.

[16] M. Blanc, H. Di Benedetto, S. Tiouajni, S. Deformation characteristics of dray Hostun Sand with principal stress axes rotation. Soils and Foundations 51 (4) 749-760, 2011.

[17] L. Zdravković. The stress-strain-strength anisotropy of a granular medium under general stress conditions. Phd Thesis, Imperial College, University of London, 1996.

[18] R.C.K, Wong, D.R. Schmitt, D. Collis, R. Gautam. Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ measurement. Journal of Geophysics and Engineering 5 103-117, 2008.

[19] M. L. Lings, D.S. Pennington, D.F.T. Nash. Anisotropic stiffness parameters and their measurement in a stiff natural clay. Géotechnique 50 (2) 109-125, 2000.

[20] K. Piriyakul. Anisotropic Stress-Strain Behaviour of Belgian Boom Clay in the Small Strain Region. Faculty of Engineering and Architecture, Ghent University, 2006.

[21] A. Gasparre, S.Nishimura, N. Anh-Minh, M.R. Coop, R.J. Jardine. The stiffness of natural London Clay. Géotechnique 57 (1) 33-47, 2007.

[22] A. Brosse, R. Hosseini Kamal, R. J. Jardine, M.R. Coop. Measuring the static and dynamic small strain stiffness of UK mudrocks Proc. 15th ECSMGE, Athens, 137-142, 2011.

[23] R. Hosseini Kamal. Experimental study of the geotechnical properties of UK mudrocks. Phd Thesis, Imperial College, London, 2012.

[24] W. Ratananikoma, S. Likitlersuang, S. Yimsiri. An investigation of anisotropic elastic parameters of Bangkok Clay from vertical and horizontal cut specimens. Geomechanics and Geoengineering: An International Journal, DOI:10.1080/17486025.2012.726746, 15-27, 2012.

[25] S. Nishimura. Small-strain stiffness characteristics of natural sedimentary clays interpreted with cross-anisotropic elasticity model. Géotechnique 64 (12) 981-996, 2014b.

[26] Free World Maps. Asian countries map. July 09th, 2015

[27] M. Yanagida. Age of the Shikotsu Pumice Fall-1 Deposit. The Quarternary Research, 33, 205-207, 1994

[28] T. Koaze, M. Nogami, Y. Ono, K. Hirakawa. Regional Geomorphology of the Japanese Islands vol.2, Geomorphology of Hokkaido, 359 p, 2003.

[29] Geological Survey of Japan. Geological map of Hokkaido. July 09th, 2015.

[30] H.Hasegawa, T. Sawagaki, R. Takashima, M. Yamamoto, T. Irino. Geology and Geomorphology along the Ishikari River in central Hokkaido. Post-symposium Field Trip Guidebook, IGCP-581 2nd Annual Symposium, Sapporo, Japan, pp. 1-43, 2011

[31] T. Benz. Small-Strain Stiffness of Soils and its Numerical Consequences. Phd thesis, University of Stuttgart, 2007.

[32] J.H. Atkinson, G. Sallfors, G. Experimental determination of stress–strain–time characteristics in laboratory and in situ tests. General report to Session 1. Proc. 10th Eur. Conf. Soil Mech. Found. Eng, Florence 3, 915–956, 1991.

[33] J.B. Burland. Small is beautiful: the stiffness of soils at small strains. Ninth Laurits Bjerrum Lecture. Can. Geotech. J. 26, No. 4, 499–516, 1989.

[34] J.A.Santos, A. Gomes Correia. Reference threshold shear strain of soil. Its application to obtain an unique strain-dependent shear modulus curve for soil. Proc. 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey, Vol. 1, pp. 267-270, 2001.

[35] L. Karl. Dynamic Soil Properties out of SCPT and Bender Element Tests with Emphasis on Material Damping. Phd thesis, Ghent University, 2005.

[36] V.P. Drnevich. (1978). Resonant column testing: problems and solutions. In Dynamic geotechnical testing (ed. M. L. Silver). Philadelphia, PA: American Society for Testing and Materials, ASTM STP 654, pp. 384–398, 1978.

[37] H. Ulloa. Stress–strain behaviour of the soils of Managua city due to seismic cyclic loading. Licentiate thesis, Lund University, Sweden, 2011.

[38] M. Asslan, F. Wuttke. Wave velocity change and small-strain stiffness in unsaturated soils: experimental investigation. In Proceedings of the 2nd European Conference on Unsaturated Soils, Naples, Italy, 20–22 June 2012, Springer, USA, pp. 355–362, 2012.

[39] B.O. Hardin, E. F. J. Richart, E. F. J. Elastic wave velocities in granular soils. J. Soil Mech. Found. Div. ASCE 89, No. SM1, 33–65, 1963.

[40] E. Hoque, F. Tatsuoka. Effects of stress ratio on small-strain stiffness during triaxial shearing. Géotechnique 54, No. 7, pp. 429-439, 2004.

[41] T.T. Kalliouglou, A. Papadopoulou. Shear modulus and damping of natural sands. Deformation Characteristics of Geomaterials, Di Benedetto et al. (eds). Pp. 401-407, 2003.

[42] G. Viggiani, J.H. Atkinson. Stiffness of fine-grained soil at very small strains. Géotechnique 45(2) 249-265, 1995.

[43] P. Y. Hicher. Elastic properties of soil. ASCE Journal of Geotechnical Engineering, 122(8), pp. 641-648, 1996.

[44] P.V. Lade, V. Abelev. Characterization of cross-anisotropic soil deposits from isotropic compression test. Soils and Foundations, 45(5), pp. 89-102, 2005.

[45] L. Zdravkovic, R. J. Jardine. Some anisotropic stiffness characteristics of a silt under general stress conditions. Géotechnique 47, No. 3, pp. 407-437, 1997.

[46] J. H. Atkinson. Non-linear soil stiffness in routine design. The 40th Rankine Lecture. Geotechnique 50, No. 5, 487–508, doi: 10.1680/geot.2000.50.5.487, 2000.

[47] V. Fioravante. Anisotropy of small-strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing. Soils and Foundations, Vol. 40, No. 4, pp. 129-142, 2000.

[48] J. Biarez, P. Y. Hicher. Elementary Mechanics of Soil Behaviour. Balkema, 1994.

[49] D. C. F. Lo Presti, O. Pallara, R. Lancellotta, M. Armandi, R. Maniscalco. Monotonic and cyclic loading behaviour of two sands at small strains. ASTM Geotechnical Testing Journal, Vol. 16, No. 4, pp. 409-424, 1993.

[50] D. C. F. Lo Presti, M. Jamiolkowski, O. Pallara, A. Cavallaro, S. Pedroni. Shear modulus and damping of soils. Geotechnique 47, No. 3, 603–617, doi: 10.1680/geot.1997.47. 3.603, 1997.

[51] B. O.Hardin, W. L. Black. Sand stiffness under various triaxial stresses. J. Soil Mech. Found. Div. ASCE 92, No. SM2, 27–42, 1966

[52] B. O. Hardin, V. P. Drnevich. Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, ASCE 98(SM7) 667-692, 1972.

[53] S. Shibuya, T. Mitachi, S. Yamashita, H. Tanaka. Effect of sample disturbance on Gmax of soils – a case study. In Shibuya, S., Mitachi, T., and Miura, S., editors, Prefailure Deformation of Geomaterials, Vol. 2, pp. 77-82. Baklema, 1995.

[54] A. L. Fernandez, J. C. Santamarina. Effects of cementation on the small-strain parameters. Canadian Getechnical Journal 38 191-199, 2001.

[55] H. B. Seed, I. M. Idriss. Soil moduli and damping factors for dynamic response analysis. Report 70-10, EERC, Berkeley, CA, 1970.

[56] T. Iwasaki, F. Tatsuoka. Effects of grain size and grading on dynamic shear moduli of sands. Soils Found. 17, No. 3, 19–35, 1977.

[57] K. H. Stokoe, S. K. Hwang, N. K. J. Lee, R. D. Andrus. Effect of various parameters on the stiffness and damping of soils at small to medium strains. Keynote Lecture. Proc. 1st Int. Symp. On Pre-failure Deformation of Geomaterials, Hokkaido 2, 785–816, 1995.

[58] C. O. R. Abbireddy. Particle form and its impact on packing and shear behaviour of particulate materials. Phd thesis, University of Southampton, 2008.

[59] C. R. I. Clayton, C. O. R. Abbireddy, R. Schiebel, R. A method of estimating the form of coarse particulates. Geotechnique 59, No. 6, 493–501, doi: 10.1680/geot.2007.00195, 2009a

[60] A. N. Casagrande, N. Carillo. Shear failure of anisotropic materials. Proc. Boston Soc. Civ. Engrs 31, 74–87, 1944.

[61] B. O. Hardin, G. E. Blandford. Elasticity of particulate materials. Journal of the Geotechnical Engineering Division, ASCE 115(GT6) 788-805, 1989.

[62] S. Yamashita, T. Suzuki. Young’s and shear moduli under different principal stress directions of sand. Proc. 2nd Int. Symp. On Pre-failure Deformation Characteristics of Geomaterials, Torino 1, 149–158, 1999.

[63] S. K. Roesler. Anisotropic shear modulus due to stress anisotropy. Journal of the Geotechnical Engineering Division, ASCE 105(GT7) 871-880, 1979.

[64] P. Yu, F. E. Richart, F. E. Stress ratio effects on shear modulus of dry sand. J. Geotech. Engng ASCE 110, 3, 331–345, 1984.

[65] K. H. Stokoe, S. K. Hwang, N. K. J. Lee, R. D. Andrus. Effect of various parameters on the stiffness and damping of soils at small to medium strains. Keynote Lecture. Proc. 1st Int. Symp. On Pre-failure Deformation of Geomaterials, Hokkaido 2, 785–816, 1995

[66] A. P. Butcher, J. M. Powell. Determining the modulus of the ground from in situ geophysical testing. Proc. 14th Int. Conf. Soil Mech. Found. Eng, Hamburg, 449–452, 1997.

[67] W. H. Ward, S. G. Samuels, M. E. Butler. Further studies of the properties of London Clay. Geotechnique 9, No. 2, 33–58, doi: 10.1680/geot.1959.9.2.33, 1959.

[68] J. H. Atkinson. Anisotropic elastic deformations in laboratory tests on undisturbed London Clay. Geotechnique 25, No. 2, 357–374, doi: 10.1680/geot.1975.25.2.357, 1975.

[69] U. Agustin. Principles of Seismology. Cambridge University Press, 1999

[70] A. E. H. Love. The mechanical theory of elasticity. Fourth Edition, Cambridge University Press, 1927.

[71] W. Lings. Drained and undrained anisotropic elastic stiffness parameters Géotechnique, 51 (6) (2001), pp. 555–565, 2000

[72] E. Hoque, F. Tatsuoka, T. Sato.Measuring anisotropic elastic properties of and using a large triaxial specimen. Geotechnical Testing Journal 19 (4) 411-420, 1996

[73] M. Jamiolkowski, R. Lancellotta, D. C. F. Lo Presti. Remarks on the stiffness at small strains of six Italian clays. Proc. 1st Int. Conf. Pre-failure Deformation Characteristics of Geomaterials, Sapporo, Japan, Vol.1 817-836, 1995.

[74] D. C. F. Lo Presti, O. Pallara, R. Lancellotta, M. Armandi, R. Maniscalco. R. Monotonic and cyclic loading behaviour of two sands at small strains. ASTM Geotechnical Testing Journal, Vol. 16, No. 4, pp. 409-424, 1993.

[75] ASTM standards D 5311. Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. ASTM standards, 2004

[76] A. F. L. Hyde, K. Yasuhara, K. Hirao. Stability cariteria for marine clay under one-way cyclic loading. Journal of Geotechnical Engineering, 119(11), 1771–1789, 1993.

[77] A. W. Bishop, L. Bjerrum. The relevance of the triaxial test to the solution of stability problems. Proceedings of the ASCE research conference on the shear strength of cohesive soils, Boulder, CO, pp. 437–501, 1960.

[78] W. Ling, M. A. Hillhouse, J. Jenkins, J. Fahey. Comparison of behavioral treatment conditions in buprenorphine maintenance. Addiction; 108: 1788–98, 2013

[79] H. B. Seed, C. K. Chan. Clay Strength under Earthquake Loading Conditions. Proc. Amer. Soc. Civil Eng. Vol. 92, SM2, pp. 53-78, 1966.

[80] K.Yasuhara, T. Yamanouchi. Cyclic streght and Deformation of Normally consolidated Clay. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 22 (3), 1982.

[81] J. Zhou, X. Gong. Strain Degradation of Saturated clayunder Cyclic Loading. Canad Geotech J , Vol 38, No 2, pp 208–212, 2001.

[82] S. Yimsiri, K. Soga. Application of micromechanics model to study anisotropy of soils at small strains. Soils and Foundations 42(5) 15-26, 2002.

[83] S. F. Brown, M. S. Snaith. The measurement of recoverable and irrecoverable deformations in the repeated load triaxial test. Ge´otechnique 24, No. 2, 255–259, doi: 10.1680/geot. 1974.24.2.255, 1974.

[84] J. B. Burland, M. Symes. A simple axial displacement gauge for use in the triaxial apparatus, Geotechnique, Vol: 32, Pages: 62-65, Issn: 0016-8505, 1982.

[85] R. J. Ardine, M. J. Symes, J. B. Burland. The Measurement Of Soil Stiffness In The Triaxial Apparatus, Geotechnique, Vol: 34, Pages: 323-340, ISSN: 0016-8505, 1984.

[86] S.K. Hellings, R. J. Jardine. Discussion on a new device for measuring local axial strain on triaxial specimens. Geotechnique, 37 (3), 413-417, 1987.

[87] C. R. I. Clayton, S. A. Khatrush. A new device for measuring local axial strains on triaxial specimens. Geotechnique 36, No. 4, 593–597, doi: 10.1680/geot.1986.36.4.593, 1986.

[88] C. R. I. Clayton, A. Siddique. Tube sampling disturbance: forgotten truths and new perspectives. Proc. Inst. Civ. Engrs, Geotech. Eng 137, No. 3, 127–135, 1999.

[89] C. C. Hird, P. C. Y. Yung. The use of proximity transducers for local strain measurements in triaxial tests. ASTM Geotech. Test. J. 12, No. 4, 292–296, 1989.

[90] F. Tatsuoka, S. Shibuya. Deformation characteristics of soils and rocks from field and laboratory tests. Keynote Lecture. Proc. 9th Asian Conf. Soil Mech. Found. Engng, Bangkok 2, 101–170, 1992.

[91] T. Cuccovillo, M. R. Coop. The measurement of local axial strains in triaxial tests using lvdts. Geotechnique 47, No. 1, 167–171, doi: 10.1680/geot.1997.47.1.167, 1997.

[92] W. Cho, R. J. Finno. Stress-strain responses of block samples of compressible Chicago glacial clays. Journal of Geotechnical and Geoenvironmental Engineering 136(1) 178-188, 2010.

[93] P. J. Schultheiss. Simultaneous measurement of P and S wave velocities during conventional soil testing procedures. Marine Geotechnology 4(4):343-367, 1981.

[94] F. Hamdi, D. Taylor Smith. The Influence of Permeability on Compressional Wave Velocity in Marine Sediments, Geophys. Prospecting 30, 622-640, 1982.

[95] J. C. Santamarina, K. Klein, A. Palomino, M. Guimaraes. Micro-Scale Aspects Of Chemical-Mechanical Coupling - Interparticle Forces And Fabric; Edts., C. Di Maio, T. Hueckel, and B. Loret, Maratea, Italy. 26 pages, 2001b.

[96] R. Dyvik, C. Madshus. Lab measurements of Gmax using bender elements. Proc. ASCE Annual Convention on Advances in the Art of Testing Soils under Cyclic Conditions, Detroit, MI, 186–196, 1985.

[97] J. S Lee, J. C. Santamarina. Discussion “Measuring shear wave velocity using bender elements” by Leong E. C., Yea, S. H. And Rahardjo, H. Geotechnical Testing Journal, Vol. 29, No. 5, pp. 439-441, 2006.

[98] S. J. Brandenberg, S. Choi, B. L. Kutter, D. W. Wilson, J. C. Santamarina. A Bender Element System for Measuring Shear Wave Velocities in Centrifuge Models. Proceedings of the International Conference Physical Modelling in Geotechnics, Hong Kong. Nov, 2006.

[99] S. Yamashita, T. Kawaguchi, Y. Nakata, T. Mikami, T., Fujiwara, S. Shibuya. Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils and Foundations 49 (4) 631-650, 2008.

[100] Amir Shajarati, W. Kris, M. Sørensen, K. Søren, J. Nielsen, Lars Bo. Ibsen. Manual for Cyclic Triaxial Test. ISSN: 1901-7278, DCE Technical Memorandum No. 14. Aalborg University, 2012.

[101] R. D. Holtz, W. D. Kovacs, T. C. Sheahan. An Introduction to Geotechnical Engineering, Second Edition, Prentice Hall, 2011.

[102] M. Arroyo, D. Muir Wood, P. D. Greening. Source near-field effects and pulse tests in soil samples. Géotechnique 53, No. 3, pp. 337–345, 2003.

[103] A. Casagrande, N. Carillo. Shear failure of anisotropic materials. Proc. Boston Soc. Civ. Engrs 31, 74–87, 1944.

[104] J. R. F. Arthur, K. B. Menzies. Inherent anisotropy in a sand. Géotechnique 22 (1) 115-128, 1972.

[105] V. Jovičić, M. R. Coop. The measurement of stiffness anisotropy in clays with bender element tests in the triaxial apparatus. Geotechnical Testing Journal 21 (1) 3-10, 1998.

[106] T. Kawaguchi, H. Tanaka. Formulation of Gmax from reconstituted clayey soils and its application to Gmax measured in the field. Soils and Foundations 48(6) 821-831, 2008.

[107] W. Cho, R. J. Finno. Stress-strain responses of block samples of compressible Chicago Glacial clays. Journal of Geotechnical and Geoenvironmental Engineering 136(1) 178-188, 2010.

[108] D. Masin, J. Rott. Small strain stiffness anisotropy of natural sedimentary clays: review and a model. Springer-Verlag Berlin Heidelberg 2013.

[109] F. Tatsuoka, K. Hayano, J. Koseki. Strength and deformation characteristics of sedimentary soft rock in the Tokyo metropolitan area,” Characterisation and Engineering Properties of Natural Soils Tan et al. (eds.), Swets & Zeitlinger, Lisse, ISBN 90 5809 537 1. 1461-1525, 2003.

[110] K. Hazirbaba, E. M. Rathje. A comparison between in situ and laboratory measurements of pore water pressure generation. Proceedings of the 13th World Conference on Earthquake Engineering (13WCEE), August 1-6, CD-ROM, 2004.

[111] A. Ansal, A. Erken. Rate Dependent Behaviour of a Normally Consolidated Clay. Proc. Of 7th European Conf. On Earthquake Engng, Athens, Vol.2, pp.329-336, 1982, 1982.

[112] A. Ansal, A. Erken. Undrained Behaviour of a Clay Under Cyclic Shear Stresses. ASCE Journal of Geotechnical Engineering Division, Vol.115, No.7, pp.968-983, 1989.

[113] A. S. Azzouz, M. A. Malek, M. M. Baligh. Cyclic behavior of clays in undrained simple shear. Journal of the Geotechnical Engineering Division, ASCE 115 (10): 637-657

[114] T. Kokusho, Y. Yoshida, Y. Esashi. Dynamic properties of soft clay for wide strain range. Soils and Foundations, Vol. 22, No. 4, pp. 1-18, 1982.